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.
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s
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element method to find complete solutions for the stress and
displacement in a pl‘ate with a centered crack. This research was carried
« out by James Maione, Research Assistant,* under the joint direction of the
- Principal Investigator and of Professor Robert Plunkett. ELThe elastic
'1 solution was obtained f irstzit was presented in the report listed as item
3 & 3 in the bibliographgﬁkrhhé“elastic/plastic solution was completed after the
2% expiration of this contract.~ A description of this phase constitutes the
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g-‘s ' AN ELASTIC - PLASTIC FINITE ELEMENT

SOLUTION FOR A CRACKED PLATE

A by

_; Philip G. Hodge, Jr., James G. Malone, Robert Plunkett

R ABSTRACT

‘ oI this paper, the finite clement method is applied Lo a center-cracked plate
A subject to opening mode tensile loading. A complete elastic-plastic plane-stress

solution for strain hardening materials obeying a Von Mises yleld condition and

o Prandti-Reuss stress-strain relations is obtained using only constant strain elements.

h An accurate representation of the stress-strain frield, even at distances very close to
) the crack tip, is achieved by the use of a mesh arrangement in which the size of the

elements decreases in a geometric series as the crack tip is approached. The
numerical solution is compared with and used to discuss the range of validity of the

) well known HRR (Hutchinson-Rice-Rosengren) crack tip solution valid for small scale
& ielding. The influence of different amounts of hardening and the effect of changes in
oo he mesh arr ents are aiso considered. Features of the finite element algorithm
R - which reduce the total computing time are discussed. The finite element pro?ram is
- executed on the Cray-1 computer and the effect of vectorization on computational
speed is discussed for this problem.

1. INTRODUCTION.

) - In @ recent Eaper (1] we have shown, for the particular problem of a
4 center-cracked elastic plate under tensile loading, that a finite element formulation

. which uses only constant-strain elements can provide an accurate representation of
i the stress-strain field even in the nei hood of the stress and strain singularities

! at the crack-tip. This was achieved usm? a large number of triangular elements
2 arranged in a mesh in which the size of the elements decreases in a geometric series
3 as the crack tip is cached. The present tg'eaper extends this technique to handle
b nonlinear material lor and discusses resulting complete elastic-plastic
7 solution for crack problems.

Methods commonly used in nonlinear finite element analysis are discussed by
Bathe (2] and Zienkiewicz [3); practical procedures for varlal:s apfllcauons have been
?resented by Bathe and Cimento (4] and also by Bergan et al [S]. In an elastic-plastic
inite element analysis, the most effective way of dealing with the material
nonlinearity is by an incremental oach in which the load is applied in a number of
small increments. Within each iIncrement, the true stress-strain relations are
approximated and an iterative process is applied to ensure that the equilibrium
equations are satisfied to within some specified level of accuracy. At each iterative
step the solution of a banded system of linear algebraic equations is required which
accounts for a large portion of the computational cost. For a given finite element
mesh, the accuracy of the solution can be improved by reducing size of the load
increments and/or imposing a tighter convergence criterion. However, this may cause
3 substantial increase in total computing time so that in practice a balance has to
be struck between accuracy and computational cost.
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Access to a CRAY-1 supercomputer has made it feasible for us to consider a
technique for nonlinear finite element analysis which uses a large number of unknowns
and many small load increments. This is possible because the computational and
memory capacity of this machine are much greater than previous generations of
computers. For example, rates of 68 MFLOPS ( million floating point operations per
second) have been recorded [6,7] on the CRAY-1S for the solution of dense systems of
linear equations of order 300 using LU decompasition with pivoting ( without resorti
to the use of assembly langua%(). is is about 28 times faster tian the IBM 3033
600 times faster then the VAX 11/780. Rates in excess of 140 MFLOPS have been
achieved by the use of assembly language [8).

In this pager. we consider thg& ticular problem of a center-cracked plate subject
to mode-1_ (tensile opening m 3’ loading. Small strains and displacements "are
assumed. This means that material nonlinearities but not etric nonlinearities are
considered. This prablem has been the subject of considerable interest. In the
following we will mention only some of the many analytic and numerical s which
haveti | R?d llg]the literature. A more detailed nt is contained in the review
article ce [9].

The asymptotic form of the plastic crack tip stress-strain field in plane strain and
plane stress has been established analyticaily by Rice [10], Rice and Rosengren [11],
and Hutchinson [12, 13] for strain hardening and perfectly plastic materials. This
solution, frequently referred to as the HRR solution, is based on the deformation theory
of plasticity and 13 valid under conditions of small scale yielding [14). It will be
discussed in more detail later in this paper.

For power law hardening materials, Tracey [15] used the finite element method to
determine the plane-strain stress state at the tip of a crack under conditions of small
scale yielding. He used special sngélsarltg elements at the crack tip in which the
displacement shape functions were en 1o represent the form of the HRR solution;
elsewhere 4-noded isoparametric elements were used. Hiiton and Hutchinson [16],
carried out a plane-stress finite element analysis for both small and large scale
plastic yieiding. Their method used constant strain triangular elements together with
:m sPecbedd'gcll singular element surrounding the crack tip in which the HRR solution was

We have recently shown (1], for an elastic analysis, that constant strain elements
can be used to obtain an acccurate representation of the stress-strain field in the
region near the crack tip. For the elastic-plastic analysis, our.approach has also been
to use a large number of constant strain triangular elements and a mesh which is
similar to that used in the elastic finite element analysis [1]. Our nonlinear finite
element procedure %i;:ds a complete elastic-plastic solution at a reasonable
computational cost when executed on the CRAY-1." We demonstrate that on a scale in
which the crack length equals one it is possible to obgem 3 sufficiently accurate
solution for the stress field at distances as close as 10 ° from the crack tip. This
solution is used to discuss both the spatial over which the HRR solution holds
and the level of applied load at which the HRR solution no longer accurately represents
the crack tip stress-strain field. Our solution provides a good representation of the
stress-strain field at all levels of applied load.

In section 2, we describe the element mesh and the algorithm which implements
our elastic-plastic finite element analysis. The numerical resuits are discussed in
Section 3. The effect of different element meshes on the computed solution and the
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influence of hardening are also reported in that section. In Section 4, computing times
for different meshes and for different amounts of hardening are discussed. Features
of the b:zgorlmn including vectorization which reduce the computational cost are aiso
described. Finally, some lusions are presented in Section S.

2. METHOD OF SOLUTION.

- In this paper, the particular problem of a r lar plate containing a_centrall
T~ located crack subject pto mode-{ (openi moﬂoest z’I'&ing pis cqnsideredrjg The cracE
> length is 2a and late is of height 2h and width 4a (see Fig. 1). The boundar
; conditions along the top and bottom edges are uniform displacements in the vertica
direction and zero traction components in the horizontal direction. Zero tractions are
prescribed on the remaining edges of the plate and along the crack faces SG. By the
usual s?mmetrv argument. the problem can be r to that of solving for one
quadrant ABEF (shaded area) of the plate with boundary conditions as shown in Fig. 1.

(a) Finite element mesh.

.0 The finite element program is based on the well known displacement method and
b uses only constant strain elements. The rectangular domain ABEF,(H% 1) is
discretized into triangular elements by a mesh generating program which has been
developed so that different mesh arrangements can be automatically produced. A
typical mesh arrangement using 216 elements is shown in Fig. 2. Meshes ranging in
size from 564 to 2064 elements and having elements as small'as 10 =6 a 7at the
crack tip have been used in this study.

N The mesh over portion ABCD of the plate is formed from the quadrilaterals defined
" by a set of rectangular rings intersected by rays. Let M numbers r; be defined by

! fm=a, [=ofy,, I=M-LM-2,... 2 @1

- where o iS a constant. The rings are a set of nested r; x 2r, rectangles with lower
corners along AGB (see Fig. 2) at distances 2 r rom_{he crack tip G. Let N-1
erldlstant points be inserted along BC and the same spacing continued along CD and
DA. The rays are straight lines from G through these points. The innermost ring is
divided into 4N al iscosceles triangles and the quadrilaterals in the remaining
rings are each split into two triangles by their diagonals as shown in Fig. 2. Finally
the mesh is completed by filling thé remaining portion DCEF_with approximately square
rectargles of constant size which are split into triangles. The mesh shown in Fig. 2 is
for M=5 and N=3. . , _
The aspect ratio F of a generic triangle JKL inring i+1 along GB is given by

F= |IK|Z]IL] = (r o - r/(r/N) = N [1/oc1] (2.2)
Hence the geometric coefficient o in Eq (2.2) is related to a typical aspect ratio by

LA
Sttt

)
i L l- .

x = (1+F/N)"! (2.3)
We have found that good results are obtained by taking F=1.

" A similar mesh has been used [1] in an elastic study of an infinite plate containing
a centrally located crack. The main features of this mesh arrangement are mare fully
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discussed in Ref. 1].
(b) Material properties.

The plate material is assumed to be homogeneous and initially isotropic, obe&gg
Hooke’s law in the elastic range with initial yielding determi the Von M
Pield condition. After yielding, plastic strain increments are defined by an associated

low rule with linear hardening. Isotropic growth of the yield condition is assumed.
At any point where uniocading occurs the incremental form of Hooke's law will again
aprlg. These assumptions " lead to the well known Prandtl-Reuss stress-strain
relations in the incremental theory of plasticity. The solution presented in this paper
is for a state of plane-stress. It is also assumed that both strains and rotations are
small. The validity of these assumptions will be discussed in Section 3.

The elastic-plastic stress-strain matrix D(g) which relates in stress to
changes in strain at points of the material which have yielded and are Toading has been
derived under the above assumptions by Yamada et al [17). During any time increment
At the stress increments Ac and strain increments Ae¢ are related by

, Ao = D(0) Ae (2. 9)
where AC = [ACy , AGy , AT yy 1T, Ac = [Acy , Ay , AY o, 1T, and ¥y is the
engweenng shear compofent of Hrain. I the materialis elasi%. o(o) is th¥ constant
matrix
I v 0
DC)=DemE/(1-02) |0 | (] (2. 5)
e [ 0 0 (I-u)lz]

whether or not earlier plastic behavior has taken place. If it is plastic,

D(O) = Dgp ® (E/Q) Gy P
*Oe 8 ¥ vy )/(1+0)

"y { (2. 6)
-0y Oy +20P ~Ty, (O +, 00 ')/}l#u)
Ya, - * +
~Txy(Oy 0’50,5'/:( 1+9) R/2( ﬂéhzrﬂgf))(l(}nf }

where o' is the deviatoric stress and @ is the equivalent stress.

g =1[(3/2) (O‘”d‘i])]'n
P = (2H/9) G2 +z,, 2 /(1+9)
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Q=R+ 2(1-02P (2. 7)
R = 0,2+200, 0,"* 0,
H = EE; /(E-E;)

where v s the Poisson’s ratio, E is Young's Modulus, and E; is the plastic modulus.

A plot of equivalent stress T versus equivalent strain € for a material

satisfging our constitutive assumptions is shown in Fig. 3. The equivalent strain € is
defined as

€= [(3/2)(6'”' G'ij)]"z (2. 8)
where € ; are the deviatoric components of strain. In practice a piet_:ewi'se linear
stress-sffain law can be determined from data obtained by a simple tension test for a

real material. We have chosen the most simple case, i.e. 3 bilinear stress-strain law,

but the above discussion can be modified in an obvious manner to handle any piecewise
linear curve.

(c) Nonlinear finite element analysis.

Since the strain is constant in each element, the column matrix of element strains
€ and the column matrix of nodal displacements u are reilated by

€=Bu (2.9
where the constant matrix B depends only on geometry and not on material behavior.

| t;l’he nodal force matrix F and the stress matrix o are related by the similar
relation

F=AcC (2. 10)

where A also depends onlg,‘ on etry. Equations (2. 9) and (2. 10) must be valid for
either total or incrementa vior.

During any incremental time step At, the stress and strain increments are related

Ao = [¢¢*B€ D(0) de = D(0™) Ac 2. 11)

where o* is some mean value of the stress state during the strain interval Ae .
Combining Eqs, (2. 4), (2. 9), and (2. 10) we obtain the usual matrix equation

K(o)Au = AF (2. 12)
where the “stiffness” matrix K is given by
K(o)=AD0)B (2. 13)

Due to the incremental nature of the stress-strain relations (see Eq. (2. 11)), this
problem is best solved by an incremental procedure in which the load is applied in a

e - e e e i e,
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series of increments AF),. Thus the load at the end of increment M is
F" =F"-| ’AF" . "=|.2.....q (2. |4)
where Fq , Fq are the initial and final loads respectively.

The problem can be posed)g follows: Given a complete solution Upmoy o €y s
O n-1 at the end of the (M-1)"" step corresgormng to the appljed external ig2d Fro-, .
{if the complete solution u,, , €4 . G, at the end of the M) step ca.respondiﬁd 0
the external load F, . Bu'% cmﬂ)lete 'golqtion . We mean column matrices for nodal
displacements, “odal forces, element strains, and element stresses. The process
during the M t step is to obtain incremental changes Au v , A€ y . AC  in
displacements, strains, and stresses, respectively, corresponding to the incremenit in
load AF, which satisfy Egs. (2. 9) to (2. 11), i.e.

A€ y = BAu (2. 15)

Aoy =Dloy" ) Ae (2. 16)

Fy = Ay (2. 17)
where Oy = Oy_y * AG Oy * is some mean value of the stress state during the
strain inferval Ae " ('15:00 will be defined later). "

The first step is fully elastic and the solution is obtained by direct solution of the
elastic finite element equations. For each later step an iterative method is used to
soive the kinematic, cmstltmwe. and equilibrium equations (2. 15, -16, -17) at step
M. The first estimate Au is given by

Au "(" = Ay M- (2. ‘6)

where Au ., is the change in displacement which occurred during the previous (M-1
U step. NExl Ae ,,?ﬁ_ and- AG )iy obtajned in order from Eqe- (2. 15) and (2. | 5
gsm% Opm-y 2s the initial n;earg1 stress ¢ ; the first total stress estimate g,
is obtaified by adding Acy(!?  to the initidl value Gy,.,.

In general aa(" will not satisfy equilibrium. We begin the iterative process by

defining a residual force:
Py = Fy - Acy() (2. 19)
and obtain a correction to the displacement increment field by solving
Ky SU (" = P, (1) (2. 20)
where
Ky = AD(C),) B (2. 21)

Ky I8 factored (Cholesk! algorithm) in the first iteration. This factored form is
thereafter retained for the current step so that only a back-sybstition need be
performed m solve (2. 2?) for each s&:ceedi ‘iteration.” Then Au w2 is obtained by
adding 8u " to  Au " and Ae %) is abtained from (2. 15). A'lnean stress Oy
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@) js defined by
Oy @ = (0., + oy )/2 (2. 22)
and  Acy? s then given by (2. 16).

_This iterative process is repeated until the residual forces P4 at the ith
iteration satisfy

|| Py || <ToOL (2. 23)
where P.M || is the magnitude of the largest component (in absolute value) of
Pr}?’r oJeLan th lnocles and Tg: is sanﬁ‘presetgérwergeme tolerance. )
The iterative procedure at the M step can bé summarized in the following

algorithm:

Al "(l'ﬂ) = AU "0) + 88U ﬂ“)

A€ "(l*‘) =B Au "(l*l)

6"' D= (Oy. + O )2

O 81 = Gy + D( O™ B*1) A€ (00

p"(M) =Fy- A gﬂtiﬂ)
where 8U L@ =0, Au, 9= Aug, ,0,N=0,,andi=0,1,2,3,... . It canbe

His £'a mogitidd form of the Ne'

(2. 24)

seen that approach is a modif orm of the Newton-Raphson method for solving a
non-linear system of equations (see Refs. [2, 3)).
(d) Load step size.

. One of the advantages of using constant strain elements is that at given
applied load the stress throughout each element will be constant. Further Tor the
problem considered here, no unloading of yielded elements occurs. Therefore, at

iven load each element is either elastiC and has never yielded or is plastic a
oading. Our numerical procedure is to terminate a ioad step when any elastic element
reaches yield. When this procedure is used each element will remain either elastic or
plastic throughout the entire load step.

th Since any single iteration is a strictly linear process, the load Fy at which the

M step is termmated can be easily estimated in the following way. At the

begimm? of the M lo?g step er) wxlg ?c;me, arbitrary load increment AF, and

proceed to compute Au ., B ! D in the manner described above. Then
"5 cdh Seatar AL

for each elastic element B we compute a factor 3%,,(") which satisfies

T 2(On-1 5+ BN Aoy (V) = vy (2.25)

where Y, is the initial yield stress. Based on the stress change AOL!" we
predict that ! " "

the element o« Tor which
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B o = ming { Fy ") (2. 26)

will be the etement most likely to first reach yield wrlrg the ﬂrrent load step. The
entire incremental solution can now be scaled bﬂ the factof %, !

¥ Ac'" = %, M Ao, (2. 27)

:?' &‘hatt element o will have just reached yield when the load is incremented by an
n .

PP gt
15 R &
AU

AFy = ¥y D AFy (2. 28)

At each iteration, improved estimates of the load increment AF, required 1(3 have
element o just reach yield can be obtained by oompu}mg scaling factors ¥, " for
espmd'i'ng to the stress change Aoy . using Eq.(2. 25).

It was found that computing scaling factors for only the first three iterations in
each load step was the most efTicient procedure. The load increment AF, is then held
fixed for the remaining iterations of the load step. At the end of the load s?ep. the yield
iy condition may not be satisfied exactly by element o but this is taken care of by the
use of a "smeared” yield condition. '

The idea of a smeared yield condition is based on a technic{ue used by Yamada et al
[17] and, in a different context, by Hodge and Van Rij [18, 19] to substantially reduce
the total number of load steps. _At the end of each load step, any elastic element 8
for which the equivalent stress G satisfies

g 0.99 Y, <3 <1.02Y, (2. 29)
i has its yield stress Y, redefined sothat Y, =3 .

- This means that elements which have not yet reached yield but which are close
;~' enough to satisfy (2. 29) can be treated as plastic in the next step. This avoids the
; need for one or more additional steps to bring these elements to yield. It also means

that the solution at the end of the step can be accepted even if some elements exceed

= the yield stress, provided (2. 29) is satisfied. The alternative would be to repeat the
load step using an improved estimate for the initial size of the load increment.

o The main features of the prmn have been described above. A more detailed
s description of the program algori may be found in Ref [20] which contains the
y _ program documentation and Fortran code.

' 0
A58

>
R R, ¥

element « corr

;(‘,\

» .4 L
A .
o @,

3. RESULVS AND DISCUSSION.

oS In this section an assessment of the accuracy of the solution particularly in the
region close to the crack tip will be given. The effect of different mesh arr ents
on the solution will aiso be discussed. Comparisons will be made Detween
elastic-plastic solutions corresponding to different amounts of hardening and aiso
with the purely elastic solution. The fumerical elastic-plastic solution in"the region

]
> 2 s

) surrounding the crack tir will be compared with an anal?tic solution which is valid
- under conditions of small scale yielding in which the plastic zone is small compared to
§: the plate dimensions.
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(2) Finite element solution.

The plate material has You%s Modulus € = 185.1 G Pa, Poisson's ratio v = 0.3 ,
initial yield stress Y = and obeys a bilinear stress-strain law with plastic
. odulus E y =2.372 G Pa The plate dimensions are h=250 mm and =75 mm (see Flg
1). This particular ¢ ge and material properties were selected so that

also

E ra?tvigrllal solution compared with the experimental results of Yagawa et

5

They reported the increase of a l th in a céntrally cracked thin (S mm thick)

- aluminum plate as a function of points straddling the crack were
' located at distances of 80 mm dlrectl above below the center of the plate. Our
. fmlte element solution was obtained usmg mesh A (see Table 1) and agrees closely
- iment as shown in Figure 4." A dimensionless load f has been def ined by
leldl initial yield load of uncracked plate: f= F/ A,Y where A, is the area

of the op edge of the plate. Henceforth, *° applied load * refers to f. Yagawa et al
[21] found a gage pomt dlsplacement of 4.43 mm at an applied load of 0.87" at which
load the crack ec?row whereas for the same displacement our numerical
solution predlcts an appll load of 0.93, which is 7% greater than the measured value.

The plastic zones at different levels of applied load are shown in Figs. S and 6. It can
be seen that the overall shape of the plastic zone is somewhat infiuenced by the level
agplled load. Our rumerical results show that the plastic zone has a radius of
about 0.12a in the region ahead of the crack tip at anagp ied load of 0.3 . The plastic
zone nrst reaches the outer edge EF of the Plate (see 1) when the apphed oad is
_ at this load the knee oocurs in the load versus %e int displacement curve
’ %ig At a load of 0.6 the plastic zone covers about 158 of the area of the quadrant
: F and extends to cover 60% of this area at a load of 0.9 .

The equivalent stress G computed at an 7)pl|ed load of 0.3 along S rags radiatmg
from the crack tip is plotted versus log (r/a) in Fig. 7 where r and
coordinates referred to the crack tip. radial distance r is measured rrom the
crack tip to the centroid of the element in which @ is computed. . Each curve
displags a ralrlF abrupt kink indicated for example by the arrow in Fig. 7 for the ray
each ray the kink ococurs at the elastic-plastic boundary. The
stresses drop off sharply over a short distance beyond the elastic-plastic boundary.
Similar behavior is observed at other levels of applied load.

m:si%he anlied load increases above 0.5 and the plastic zone extends across the

o
BVl

-

L4
B s -

R NN

nd that the equivalent stresses in the region close to the crack tip
2 r/a<10- ) are greater than but approximately proportlona tothe e walent stresses
< obtained rrom the rel elastic solution. The factors of proportionality are about 2
< and 1.4 at of 0.6 and 0.9, respectwel Tms means t t, at applled
loads greater han 0 S the stress field displ a 1/ singularity at the crack tip.
) The detailed behavior of the stress field applied loads below f= 0.5 will be

discussed later in subsection (d).

%ure 8 shows the ¢ components of strain on a log- scole The strains along
4 the 49 show, a l/j? variation at the crack ti r/la<20x 10

b Al tms ray, the elastic-plastic boundary is loca ed atr/as= 0 S. Over the range

N r/a > 0.15 the cr strain components are gréater than those which would be obtained

from a purelg elastic solution. For example, the percenta%:aqirfereme between the

eases from 10X just

; strains from the elastic-plastic and elastic solutions
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outside the elastic-plastic boundary to less than 3% near the of the plate (for r/a
>0.9) . As the gpplied load is increased the distance from the Crack tip over which
disp ?s 3/ Jr var&ation increases in extent up to a maximum distance of abou
r/a = 0.02 along the 49 ¥ ray at an appiied load of 0.3. The behaviour of the strain
along other rag? is qualitativew similar; the largest ¢, strain components occur
along the ray for whiche = 61 9.

We have agso considered a material with a higher amount of hardening ( E
1851 G Pa ). The behavior of the stress-strain field for this material i
g:alita;ively similar to that obtained for the lower hardening material (E y = 2.372

a) which has been discussed above.

(b) Effect of different mesh arrangements.

(I ]

The presence of a singularity in the stress-strain field at the crack tip requires
that the arrangement of elements in the mesh must be carefully selected if an
accurate solution is to be achieved at a reasonable computational cost. The elastic
finite element solution for 3 crack problem, using a mesh similar to that described in
Sec. 2 is discussed in Ref. [1]. It was found that increasing the number of rings in the
mesh produced more accurate results in the region close to the crack tip, whereas an
increase in the number of rays gave more accuracy over the rest of the plate. It was
also shown that for a given mesh, increasing the number of rings while holding the
number of rays fixed ( thereby increasing the density of elements only at the crack tip
) produced less than 0.1% improvement in the accuracy of the solution over the range r
>)100r, where ry is the position of the innermost ring in the original mesh. We now
show (hat similar observations hold for the elastic-plastic problem.

. Four specific mesh arrangements have been considered (Table 1). Solutions for the
high-hardening material (E; =18.51 G Pa )were obtained for each mesh over a range of
loads up 10 0.9 . At this l0ad the plastic zone extended to touch aimost all of the edge
EF (see Fig. 2). To facilitate a comparison with the results of Ref. [1] , we will
compare the vertical components of displacement v at nodes alon? the crack face
obtained from each mesh. Similar behavior is observed for v aiong other radial
directions and aiso for tha strain field.

_Meshes A and B v . ~ -Zwouen to study the effect of changing the number of rings
while keeg,l the numbe: of rays fixed. The 3olut|ons obtained from meshes A and B
show no difference in v over r 10 ¢ <r/a<1 atall levels of loading.
However, over therange 10 4 <r/a < 10 -2 the vertical dispiacements v obtained
from mesh B are less than those abtained from mesh A. The difference between the
two solutions increases as the crack tip is approached. For example, at an applied
1oad of 0.3 the differences in v are appprmtimatel%eo.sx. S.5%, and 16X at r/a equal
10 10 -3, 10 ~4, and 3.33x10 -5 ( the position of the node on the crack face adjacent
to the crack tip in mesh B), respectively.

The effect of increasing the density of the elements over the entire plate by
doublin? the number of rays while holding the number of rings fixed, was studied
comparing meshes C and D.” The vertical displacements v along the crack face obtai
from the coarse mesh C are smaller than those obtained from the refined mesh D. For
example, at an applied load of 0.3 the djfferences in v were approximately 1.4%, 2%,
3%, and 7% at r/aequal to 1, 10 ', 10 "¢, and 4.6x10 ™, respectively.

An assessment of the accuracy of the finite element solution for the elastic
problem [1] was made possible by a comparison with an exact analytic solution. It
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was found that the elastic strain and displacement fields obtained by the use of mesh
A were in very good agreement with the analytic solution. For example, the error in
vertical digglacement v along the crack face was 2%, 4%, 6%, and 14% at r/a equal to
1, 107, 107, and 10, respectively.

In the absence of a complete analytic solution for the elastic-plastic problem, it
is not possible to determine the accuracy of the finite element solution directly, as
was done for the elastic problem. However, the observations which have been made on
the effect of different mesh arrangements for the elastic-{)last\c problem are

alitatively the same and in close quantitative agreement with those made in Ref.[l]
or the elastic problem. Given this agreement, we can infer from the results of [1
that mesh A shouid also be expected to provide an element arrangement for _gvhid'\ an
accurate elastic-plastic solution can be obtained over the range’r/a > 10 © . This
assertion is borne out later in the paper when the numerical solution is compared with
the analytical HRR crack tip solution under conditions of small scale yielding.

For the elastic-plastic problem, it is found (see Section S) that the computational
cost increases by a factor of about 10 when the number of rays in the mesh is doubled
(i.e. changing N=3 to N=6) . However, from the elastic results (1], it would be expected
that this change in the mesh would only slightly improve the accuracy of the so utlo_rk
e.g. by approximately 1%, 2%, 3%, and 6% in v at r/a equal to 1,10 4,710 “4, and 10
. respectively. It was concluded that mesh A can be expected to provide the best
element arrangement in terms of balancing computational cost and accuracy over the
range r/a>10"® for the elastic-plastic analysis.

(c) Small scale yielding and the HRR solution.

The analytic crack tip HRR solution (10,11, and 12] is based on a defarmation tneorq
of plasticily and is valid under conditions of small scale yielding. The term smali
scale yielding refers to the situation in which the ap?hed 10ad is sufficiently low so
that the size of the plastic zone is small compared to the length of the crack; it is
small efmgh that the plastic zone is embedded in an elastic field governed by the
dominant 17/r term in the.asgmptot,ic elastic series solution. In obtaining the HRR
solution, the 1//r elastic term is the assumed boundary condition for large r.
However, the HRR analysis cannot predict how large the plastic zone may become so
that the 1//r elastic term is still a approximation for the solution in the
region surrounding the plastic zone. Further, the HRR solution represents the
elastic-plastic solution only over a small region of the rplasi:tc 2one located at the
crack tip. The extent of this region cannot be determined from the HRR analysis.

Our numerical results provide a solution uver the entire plastic zone and are based
on an incremental flow t !{of plasticity. It has been n [22] that a solution
obtained using deformation ry will similar to that obtained using an
incremental flow theory of plastici g {Jrowded the condition of proportional stressmg
is satisfied. It has been pointed out (13] that proportional stressing can be expecte
ttt) hold utrnge,r }he assumption of small scale yielding for a material obeying a bilinear
stress-strain law.

For such a material Hutchinson [12] has shown that the radial and lar
variation of the stresses in the HRR solution has the same form as the dominant term
in the elastic solution. In the HRR solution the equivalent stress Gypq at a point (r, 6)
can be represented by

O\gn = Kr172[cos2(6/2) + (3/4) sin2 6)'/2 (3.1
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*:;f‘f wihere b; and @ are polar coordinates referred to the crack tip. The amplitude K is
‘:_:'.jf given

o K = (E,/E)'2K, (3.2)

; where K, is the elastic stress intensity factor which replaces K in Eq. (3. 1) to yield
N the elastic singular torm.

; N.

s Confidence in the accuracy of the numerical solution in the crack tip region can

be gained from a comparison with the HRR solution. On the other hand, the accurate
numerical solution can be used to assess the range over which the HRR solution is
valid at different levels of lied load and also to determine the behavior of the
solution over the remainder of the plastic zone in which the HRR solution does not
hold. In addit.tor\l the level of applied load up to which the HRR solution provides an
accurate description of the crack tip stress field can be estimated. These topics will
be the subject of the discussion that follows.

(d) Comparison with the HRR solution for small scale yielding.

i The elastic stress intensity factor K, {used to comrute Oupn - See Egs. (3. 1) and
i (3. 2)] has been determined from the eléstic finite element"Solution by the method
o described in Refs. (1 and 23], _ It has been shown [1] that K, computed by this method
- ' will be accurate to within 3% of the correct value. ér this prob em, we have
computed K, /V/a Y = 1.23 . We compare the HRR and finite element solutions for the
low hardening material by examining the ratio A = Gao/ G along the 499 ray where

is tfll:q equivalent stress obtained from the numerical solution. The results are
shown in Fig. 9.

For the elastic finite element analysis we know, by consideringethe analytic
solution for & (given by the 1/ /r elastic term in the region near the crack tg .
that the error in increases as the crack tip is approached. The error is about 20%
in those elements nearest the crack tip but is less than 1S% for r/a > 1074 . As
discussed in subsection (b) above, similar behaviour regarding the accuracy of @ can
be expected from the elastic-plastic finite element sofution.” As a resuit, we can be
reasonably confident that the difference between & and G at points for which A
< 0.8 can not be caused solel gari‘mowra?g in the numerical solution. The HRR
solution provides an accurate r tation of the near tip stress field over the range
r/a<p where p is unknown. However, from F iq. 9 we can easily determine an upper
bound on f by using the criterion that the HRR solution can be considered to represent
the stress field only at points for which A > 0.8 .

comparing the A curves for f equal to 0.07, 0.22, and 0.3 in Fig. 9, it can be
seen that p increases in magnitude as the applied load is increased. However, these
curves show that the HRR solution represents the stress field only over a very smail
ggti‘ of the plastic zone. For example, at f= 0.3 the elastic-plastic bwndar# along
1073
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ray is at r/a = 0.15 but the HRR solution is certainly not valid beyond r/a =

As the load is increased above 0.45 , the numerical solution for the stress field
at the crack tip begins to differ incr asing%.rrqm the HRR solution. For example,
consider the curve corresponding to f = 0.6. " This is expected because the plastic zone
has extended to the _ormeplate(seeFlgéS)?)tnatltcanml be regarded
as embedded in an elastic field governed by the 1//r term. Therefore, the small scale
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vl yielding conditions assumed for the HRR solution are no longer true at these higher
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applied loads. From our numerical results we conclude, for this particular crack
problem, that the HRR solution does not represent the stress fleld arﬂwhere in the
vicinity of the crack tip when the applied load f exceeds about 0,5. can
from curve ro; f = 0.6 that the stress field displays the 1//r sinqularity
the range r/a < 1072 but its amplitude is no longer determined by K in Eq.(3. 2).

Similar behaviour is exhibited by the elastic-plastic solution for the high hardenig
material (E; = 18.51 G Pa). For this material, it is found that the range over whi
the HRR solution represents the crack tip stress field is sli O;I(P largef in size than
that found for the low hardening material at the same applied .

(e) Validity of the small strain and small rotation assumptions.

The €, components of strain are shown in Figure 8§ for the low- hardening material
at an applied load of 0.3 . The strains along the 49° ray are greater than 0.1 over
the range r/a <10 "3 . It is clear that the assumption of smallstrains is violated in
}gre region near the crack tip. The rotations of the elements in this region are also

ge.

A formulation which accounts for large strains and large rotations would be a
more appropriate model. However, in our discussion (subsection (b)) on the effect of
the different meshes, it was shown that changes in the solution over the region near
the crack tip do not produce significant changes in the region away from the crack tip.
The large-strains are limited to a very small region at the crack tip. It might then be
expected that a {arge strain formulation would not significantly aiter the solution over
much of the remainder of the plate.

The same conclusions cannot be drawn at hi levels of applied load, e.g. = 0.5
or greater, for which the plastic zone has reached the outer edge of the plate. A
these loads the region of large strains has increased in size (for example, r/a < 10 -
at f= 0.6) to the extent that a large strain solution would be expected to differ from
the small strain solution over much of the plate.

4. COMPUTING TIME AND VECTORIZATION.

In our finite element analysis, the use of a large number of degrees of freedom,
many small load steps, and a ignt convergence criterion is feasible because of the
of the CRAY-1 computer. For example, a typical load step involves the solution

of 1300 linear equations and requires about 30 iterations for convergence; the
computations for such a step take only 1.2 <. p. u. seconds. )

For both the low and the high hardening materials the size of the load ina'em%nts
when using mesh A ranged from Af= 10 4~ at lower applied loads up to Af= 10 ¢ at
hi loads. The tolerance used in the conver criterion (2.23) was set at TOL=
1 and was held fixed for each load step. Al this tolerance the solution for u, €,
O and nodal forces F converged to 3 places of decimals.

Information about the computations performed using different meshes for both the
low and high hardening materials is displayed in Table Z. For the same mesh, the total
C. p. u. time for the low-hardening material is about twice that required for the
high-hardening material. For a particular material, the number of iterations required
per step is i t of the choice of mesh and is governed onl the amount of

nonlinearity present in the problem, i.e. on the extent of the plastic zone at the
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current applied load. A comparison of the c.p.u. times for the high hardening material
using m C and D shows that the computational cost is increased by a factor of
gbou 10 when the density of elements over the entire plate is increased by a factor of

An important feature of the CRAY-1 is its vector hardware which enables the
machine to execute computational processes, in which the same arithmetic operation
is performed on each element or pair of elements from an ordered set, by
*vectorization®. Vectorized computations are performed at 2 significant increase in
speed compared to the more conventional “scalar® mode in which computations are
performed sequentially. Guidelines for writing FORTRAN programs which make
efficient use of vectorization can be found in Refs. [24-26].

In an experiment, vectorization was temporarily turned off for a run using mesh A
so that vector and scalar speeds could be compared for our code. The computations
involved in Egs. (2. 15), (2. 16), (2. 17),-and (2. 22) were carried out by vectorization
at speeds which were 3, 5, 7, and 10 times greater, respectively, than those attained
in scalar mode. Assembly of the global stiffiess matrix and 10ad column matrix is an
wherenthi; scalar process, the small amount of vectorization which could be achieved
resulted in speeds which were only 1.5 times faster than scalar mode.

It is common R.}]. when using a modified Newton-Raphson scheme, to obtain an
}tslrtlzluguﬁs %%sﬂ( for the change in displacement during the M ™ step by solving
n

Ky AU (" = AFy (4. 1)

However, in our algorithm, the initial guess Au " is given by the displacement
increment Au rom the previous step (see Eq."z. 18). We found that this simple

subst tbl{g reduced the number of iterations required for convergence in each
step. As aresult the total c. p. u. time was reduced by a factor of about 2.

In the modified NewtonfR?hson iterative scheme which we have discussed in
Section 2, the stiffness matrix K is updated (using the current state of stress) at the
be&lmmg of each load step. An alternative Is mlm urdate K periodically and to
refain the same factored form (Rt R Cholesky algorithm) for a number of load steps.
For this problem, we experimented with a periodiC updating strategy based on the rate
of conver of the iterative process. However, we found thatl this strategy was
difficuilt to implement successfully in our Erogram For example, our best attempts
reduced the total computing time by at most 20% whereas for other meshes the same
strateqy actually increased the computing time. It was decided to retain the more
simple algorithm (see Section 2) in which K is updated at the be)gmmng of each load
step (the computing times shown in Table 2 are for that algorithm).

For both materials 60% of the total computing time was involved in equation
solving. In our program, the banded sgpségm of linear equations is solved by vectorized
svgrcsl{cira\sl‘g'r_arthe LINPACK routines O and SPBFA, available through the CRAY

ibrary.

S. CONCLUSIONS.

An elastic-plastic finite element method which uses only constant strain
tri lar elements has been developed for a problem which ibits a stress
singularity. The method yields a complete solution for stress, strain, and
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displacement which is accurate even at points which are very close to the singularity.
The method does not require any 2 pr/ar/ knowledge of the form of the si larlt?.
The load is applied in a series of small increments. The size of each increment is
determined by the ioad at which the next element (out of ail those that are currently
elastic) is predicted to reach yield. The nonlinear material behavior is accounted for
by a modified Newton-Raphson iterative process which ensures that the equilibrium
equations are satisfied at the end of each load increment. The solution for the
particular prablem of a centrally cracked plate under tensile loading in a state of
plane-stress has been presented.

The finite element solution was obtained by using @ mesh in which the size of the
elements decreases in a geometric series as the crack tip is approached (see Sec. 2).
In section 4, it was shown that the effect of different element arrangements on the
elastic-plastic solution is similar to that observed for the purely elastic solution
(Rer.[1]). Features are included in the finite element algorithm which significantly
reduce the total c.p.u. time. In addition, the finite element code was written to take
advantage of the vectorizing capabilities of the CRAY-1 computer, thereby
substantially decreasmg,.._the computational cost. A mesh was en, for our
particular problem, which provided the best balance between accuracy and
computational cost.

Confidence in the accuracy of the solution was gained from a comparison with the
analytic HRR (Hutchinson-Rice-Rosengren) (10,11, and 12] solution in the neighborhood
of the crack tip under conditions of small-scale yielding. 1t was shown that the HRR
solution represents the behavior of the crack lip stress-strain field provided the
applied average stress does not exceed about one half of the yield stress. Under
conditions of small-scale yielding, the HRR solution characterized the stress-strain
field in the vicinity of the crack tip only over a very small portion of the plastic zone
located at the crack tip.

_ The method presented here could easily be extended to materials which obeq a
iecewise linear stress-strain law. Yield conditions other than Von Mises could also
considered. Other fracture problems such as edge cracks, non-uniform loading,
shear loading, cracks in bending, etc. could all be trivially handled by changing the
boundary conditions. For these problems, the influence of geometry and boundary
conditions on the HRR solution could be studied. This has applications in determining
minimum size requirements for specimens used to establish a “one parameter” fracture
criterion based on the J-integral. The method could be modified to deal with cracks in
inhomogeneous and/or anisotropic materials such as composites.

The method could also be extended, admittedly not without some effort, to study
the state of stress at the tip of a growing crack for which the form of the singularity
is not well understood in most materials. In a broader context, problems involving
other d;roreré!s of singularity such as point loads and reentrant corners could also be
consi .

In this paper, the emphasis has been on showing that a finite element method which
uses anly constant strain elements can provide a Complete elastic-plastic solution for
a state of plane-stress even in the region of high stress gradient close to the
sinqularity. However for real plates the State of sfress in the vicinity of the crack
tipis fully three dimensional. The piane-stress solution can be expected to hoid only
at distances from the crack tip which exceed the plate thickness. This means, for the
particular ?eanetrg which we have considered, that the solution can have physical
meaning only over 3 range of about r/a >0.05 . As discussed in Section 3(b), accurate
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solutions can be obtained over this range using a coarse mesh (about 600 elements) in
relatively small ¢. p. u. times. It has been n (Sec. 3(e)) that large strains and
rotations are predicted in 3 nei hood surrounding the crack tip, the size of which
increases as agglied stress Is increased. The assumption of small strains over the
range r/a > 0.05 holds only when the applied stress is less than half the yield stress.

This suggests that a three dimensional finite element analysis with a formulation
to account Tor large strains and rotations is required to obtain a better understanding
of the fracture process in the region close to the crack tip. The nonlinear finite
element algorithm and mesh ideas introduced here could be extended to the three
dimensional problem using constant strain tetrahedral elements. The increased speed
and memory capacity of the more recent models of the CRAY supercomputer make it
reasonable to expect that a full three dimensional elastic-plastic solution can be
achieved for this probiem.
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